Skip to content

Home

ping()

GET: /ping

Endpoint to check if the server is running.

Returns:

Name Type Description
Response

Response with status 200 if the server is running.

Source code in app.py
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
@app.get("/ping")
def ping():
    """
    # GET: /ping

    Endpoint to check if the server is running.

    Returns:
        Response: Response with status 200 if the server is running.
    """
    try:
        client = grpcclient.InferenceServerClient(
            url=config.grcp_model_server_address, verbose=False
        )
        return Response(status_code=200)
    except Exception:
        return Response(status_code=400)

predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image and send it to the inference server.

Headers

Input-Location: Location of the image in the GCS bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone: how much to crop from the center of the image.

- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- slice_thickness: slice thickness parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- type_of_scan: type of scan, should be macula, widescan, optic_disk

- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

- num_slices: number of slices in the exam

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
@app.post("/bucket_invocations")
def predict_bucket(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image in the GCS bucket.
        *Webhook-Url*: URL to send the results of the inference.
        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.
        *Input-Bucket-Name*: Name of the input bucket.
        *Output-Bucket-Name*: Name of the output bucket.
        *Examination-ID*: ID of the examination, used to track the request results.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone: how much to crop from the center of the image.

            - mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - slice_thickness: slice thickness parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - type_of_scan: type of scan, should be macula, widescan, optic_disk

            - zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

            - scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

            - num_slices: number of slices in the exam


    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """

    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )

    start = time.time()
    images = asyncio.run(
        _read_from_gcp_bucket_async(input_bucket_to_use, input_location, examination_id, config, logger)
    )
    elapsed = time.time() - start

    logger.info(json.dumps({
        "status": "INFO",
        "message": f"Read {len(images)} images from GCP bucket {input_bucket_to_use}/{input_location}. Took {elapsed} seconds.",
        "examination_id": examination_id
    }))

    try:
        request_uuids = []
        result_paths = []
        filenames = []
        statuses = []

        for filename, image in images:
            client = grpcclient.InferenceServerClient(
                url=config.grcp_model_server_address,
                verbose=False,
                channel_args=(("grpc.lb_policy_name", "round_robin"),),
            )
            model_config = client.get_model_config(
                model_name=model_name, model_version=model_version, as_json=True
            )["config"]
            img = image
            img = img[np.newaxis, ..., np.newaxis].astype(np.float32)

            inputs = [
                grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
                grpcclient.InferInput("INPUT_JSON", (1, 1), "BYTES"),
            ]

            inputs[0].set_data_from_numpy(img)

            slice_idx = int(filename.split(".")[1])
            inference_params = inference_parameters.replace("'", '"')
            dict_inference_parameters = json.loads(inference_params)
            dict_inference_parameters["slice_idx"] = slice_idx

            zone_to_run = define_zone_to_run(dict_inference_parameters, logger)
            request_uuid = str(uuid.uuid4())
            if zone_to_run is not None:
                dict_inference_parameters["zone_of_interest"] = zone_to_run
                inference_params = json.dumps(dict_inference_parameters)
                inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

                outputs = [
                    grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
                    for i in range(len(model_config["output"]))
                ]

                request_uuids.append(request_uuid)
                result_paths.append(
                    f"{output_bucket_to_use}/{config.output_folder_name}/{request_uuid}.json"
                )
                filenames.append(filename)

                statuses.append("sent")

                response = client.async_infer(
                    model_name=model_name,
                    model_version=model_version,
                    inputs=inputs,
                    outputs=outputs,
                    callback=partial(
                        result_image_bucket_callback,
                        model_config=model_config,
                        filename=filename,
                        request_uuid=request_uuid,
                        client=client,
                        webhook_url=webhook_url,
                        write_to_gcs=write_to_gcs,
                        output_bucket_name=output_bucket_to_use,
                        examination_id=examination_id,
                        logger=logger
                    ),
                )
            else:
                filenames.append(filename)
                request_uuids.append(request_uuid)
                result_paths.append(None)
                statuses.append("no_zone_to_run")

        return JSONResponse(
            content={
                "filename": filenames if len(filenames) > 1 else filenames[0],
                "request_uuid": request_uuids if len(request_uuids) > 1 else request_uuids[0],
                "result_path": result_paths if len(result_paths) > 1 else result_paths[0],
                "status": statuses if len(statuses) > 1 else statuses[0],
                "examination_id": examination_id,
            },
            status_code=200,
        )

    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_bucket_azure_uae(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), write_to_gcs=Header(False), input_bucket_name=Header(None), output_bucket_name=Header(None), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image and send it to the inference server.

Headers

Input-Location: Location of the image in the Azure Blob bucket. Webhook-Url: URL to send the results of the inference. Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default. Input-Bucket-Name: Name of the input bucket. Output-Bucket-Name: Name of the output bucket. Examination-ID: ID of the examination, used to track the request results. Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys

- scan_width: width of the scan window.

- mm_crop_zone: how much to crop from the center of the image.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- pixel_spacing_column: pixel spacing column parameter of the exam.

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
@app.post("/bucket_invocations_azure_uae")
def predict_bucket_azure_uae(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    write_to_gcs: bool = Header(False),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image in the Azure Blob bucket.
        *Webhook-Url*: URL to send the results of the inference.
        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.
        *Input-Bucket-Name*: Name of the input bucket.
        *Output-Bucket-Name*: Name of the output bucket.
        *Examination-ID*: ID of the examination, used to track the request results.
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys

            - scan_width: width of the scan window.

            - mm_crop_zone: how much to crop from the center of the image.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - pixel_spacing_column: pixel spacing column parameter of the exam.

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported.
    """

    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )

    images = _read_from_azure_uae_bucket(input_bucket_to_use, input_location)

    try:
        # Process the image contents here (e.g., save it, analyze it, etc.)
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            config,
            write_to_gcs,
            examination_id,
            logger
        )
        return JSONResponse(
            content={
                "filename": response["filenames"],
                "request_uuid": response["request_uuids"],
                "result_path": response["result_paths"],
                "status": "sent",
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))

POST: /invocations

Endpoint to process an image and send it to the inference server.

Parameters:

Name Type Description Default
image UploadFile

Image file to process (in the request body).

File(...)
Headers

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- slice_idx: index of the slice to process.

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone: how much to crop from the center of the image.

- mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

- exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

- slice_thickness: slice thickness parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

- num_slices: number of slices in the exam

- type_of_scan: type of scan, should be macula, widescan, optic_disk

- scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

Content-Type: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg". Webhook-URL: URL to send the results of the inference. Examination-ID: ID of the examination, used to track the request results.

Returns:

Type Description

JSON with the results of the inference:

  • filename: Name of the file that was processed.
  • status: Status of the request. Can be "sent" or "error".
  • request_uuid: UUID of the request, generated by the server. Used to track the request results.

Raises:

Type Description
Response

Error response if the content type is not supported.

Source code in app.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
@app.post("/invocations")
def predict_image(
    image: UploadFile = File(...),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /invocations

    Endpoint to process an image and send it to the inference server.

    Args:
        image (UploadFile): Image file to process (in the request body).

    Headers:
        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - slice_idx: index of the slice to process.

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone: how much to crop from the center of the image.

            - mm_crop_zone_nerve: how much to crop from the center of the image for nerve zone.

            - exam_center_coordinate: center coordinates of the image (obtained from fovea center model).

            - slice_thickness: slice thickness parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - zone_of_interest: zone of interest to process. Could be "fovea", "nerve"

            - num_slices: number of slices in the exam

            - type_of_scan: type of scan, should be macula, widescan, optic_disk

            - scan_protocol: scan protocol, should be "VERTICAL_3D", "HORIZONTAL_3D", "UNKNOWN"

        *Content-Type*: Type of the image. Can be "image/jpeg", "image/png", "image/tiff", "image/bmp", "image/jpg".
        *Webhook-URL*: URL to send the results of the inference.
        *Examination-ID*: ID of the examination, used to track the request results.

    Returns:
        JSON with the results of the inference:
        - filename: Name of the file that was processed.
        - status: Status of the request. Can be "sent" or "error".
        - request_uuid: UUID of the request, generated by the server. Used to track the request results.

    Raises:
        Response: Error response if the content type is not supported.
    """

    client = grpcclient.InferenceServerClient(
        url=config.grcp_model_server_address,
        verbose=False,
        channel_args=(("grpc.lb_policy_name", "round_robin"),),
    )  # , concurrency=1, connection_timeout=10)
    model_config = client.get_model_config(
        model_name=config.model_name, model_version=config.model_version, as_json=True
    )["config"]

    content_type = image.content_type

    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    if content_type not in config.available_content_types:
        return Response(
            status=415,
            content="Cannot decode image data. Is content_type correct?",
            media_type="text/plain",
        )

    try:
        inference_params = inference_parameters.replace("'", '"')

        inference_params_dict = json.loads(inference_params)
        zone_to_run = define_zone_to_run(inference_params_dict, logger)
        request_uuid = str(uuid.uuid4())
        if zone_to_run is not None:
            contents = image.file.read()

            image_bytes = np.frombuffer(contents, dtype=np.uint8)

            img = cv2.imdecode(image_bytes, cv2.IMREAD_GRAYSCALE)
            img = img[np.newaxis, ..., np.newaxis].astype(np.float32)

            inputs = [
                grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
                grpcclient.InferInput("INPUT_JSON", (1, 1), "BYTES"),
            ]
            inputs[0].set_data_from_numpy(img)

            inference_params_dict["zone_of_interest"] = zone_to_run
            inference_params = json.dumps(inference_params_dict)

            inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

            outputs = [
                grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
                for i in range(len(model_config["output"]))
            ]

            response = client.async_infer(
                model_name=config.model_name,
                model_version=config.model_version,
                inputs=inputs,
                outputs=outputs,
                callback=partial(
                    result_callback,
                    model_config=model_config,
                    filename=image.filename,
                    request_uuid=request_uuid,
                    client=client,
                    webhook_url=webhook_url,
                    examination_id=examination_id,
                    logger=logger
                ),
            )

            return JSONResponse(
                content={
                    "filename": image.filename,
                    "status": "sent",
                    "request_uuid": request_uuid,
                },
                status_code=200,
            )
        else:
            return JSONResponse(
                content={
                    "filename": image.filename,
                    "message": "No zone to run",
                    "status": "no_zone_to_run",
                    "request_uuid": request_uuid,
                },
                status_code=200,
            )
    except Exception as e:
        return JSONResponse(
            content={
                "filename": image.filename,
                "message": str(e),
                "status": "error",
                "request_uuid": request_uuid,
            },
            status_code=400,
        )